| 1 | <p>Define and apply the governing mass, momentum and energy conservation equations in fluid problems for steady and unsteady systems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 2 | <p>Understand and apply concepts of stress, principal stress, strain, principal strain, volumetric strain, thermal expansion and compatibility in the description of material behaviour.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 3 | <p>Understand the different types of real material behaviour, including elasticity, viscoelasticity and anisotropy; understand experimental methods for material characterisation.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 4 | <p>Understand and apply concepts from the theory of Linear Elasticity, including isotropy, transverse isotropy and orthotropy.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 5 | <p>Use and apply concepts of mechanics, including stress, strain, compatibility, to solve elementary problems involving axial components, torsional members, pressure vessels and beams.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 6 | <p>Define and apply Fourier’s and Fick’s laws of heat and mass transfer; derive and solve heat conduction and mass diffusion problems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |