| 1 | <p>Use and apply index notation to express and operate on vectors and tensors and prove tensor identities.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> </p> |
| 2 | <p>Compare and contrast spatial and material coordinate systems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 3 | <p>Analyse large deformation kinematics with respect to material coordinates.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> </p> |
| 4 | <p>Define stress tensors with respect to spatial and material coordinates.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 5 | <p>Derive and analyse constitutive equations for isotropic and anisotropic tissues.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 6 | <p>Understand and analyse mathematical models of muscle contraction.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 7 | <p>Derive, analyse and solve the laws of mass and momentum conservation for a fluid with appropriate simplifications.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 8 | <p>Derive, explain and apply mathematical expressions for the rotation, deformation and material derivative of a fluid element.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 9 | <p>Select and apply appropriate constitutive models to analyse the flow of blood in large and small vessels.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 10 | <p>Derive, analyse and solve the equations of heat and mass transfer in a flowing medium.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |