Molecular Interactions in the gas and liquid phases Introduction to concepts of non-ideality in molecular interactions in the gas phase. Compression factor, equations of state, van der Waals equation, critical point. Non-ideality in liquids: molar quantities, chemical potential, mixing (ideal and regular solutions), upper and lower critical solution temperatures, eutectics, activity. Electrolyte/polymer solutions: Debye-Hückel theory, polymer properties, random walk, random coils, solvency, persistence length. Solution surfaces and interfaces: surface tension, surfactants, Gibbs adsorption isotherm, CMC, Krafft Temperature. Colloids and emulsions: emulsion instability, creaming, flocculation, coalescence, Ostwald ripening. Interactions in biophysical chemistry: Self-assembly, phospholipid membranes, proteins, folding, hydropathy. Molecular Energy Levels and Spectroscopy Introduction to concepts of spectroscopy – electromagnetic radiation, energy levels (electronic, vibrational, rotational), absorption emission and stimulated emission, selection rules. Calculation of molecular energy levels. Electronic spectroscopy. Molecular electronic states and their symmetry properties, symmetry selection rules for electronic transitions. Molecular Symmetry and Spectroscopy Molecular symmetry and group theory. Symmetry elements and symmetry operations, molecular point groups, representations of symmetry operations, and point group character tables. Application of group theory to molecular orbital theory, electronic transitions and vibrational transitions. Normal modes and their symmetry properties, determination of the symmetry species of normal modes, symmetry selection rules, structure determination using vibrational spectroscopy, correlation tables, and symmetry reduction.Modern Surface Chemistry and Heterogeneous Catalysis Introduction to the concepts and techniques involved in the study of chemical processes at the gas/solid interface and their importance in heterogeneous catalysis. Topics to be covered include crystal and electronic structures of surfaces; adsorption and desorption; Langmuir adsorption isotherm and BET adsorption isotherm; surface kinetics and dynamics including surface reaction models; Langmuir-Hinshelwood and Eley-Rideal mechanisms; structure-reactivity relationships. Emphasis will be placed on the application of modern experimental methods, such as TPD, STM, XPS, HREELS, RAIRS for catalyst characterization, elucidation of reaction mechanisms, and the “in-situ” characterization of working catalysts.