| 1 | <p>Apply the principles of fluid statics in Chemical Engineering systems involving the holding of fluids and its subsequent effect on submerged objects.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> </p> |
| 2 | <p>Apply the principles of fluid dynamics in Chemical Engineering systems involving the transfer of liquid and gases.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> </p> |
| 3 | <p>Employ the principles of heat transfer conduction (steady-state and transient) to solve real-world problems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> </p> |
| 4 | <p>Apply the principles of heat transfer convection to evaluate heat transfer coefficients for natural and forced convection.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> </p> |
| 5 | <p>Analyse heat exchanger performance using the log mean temperature difference and heat exchanger effectiveness methods by understanding the concepts behind the heat exchangers.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> </p> |
| 6 | <p>Demonstrate practical proficiency in heat transfer and fluid mechanic processes.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 7 | <p>Utilize numerical techniques to solve complex problems related to fluid mechanics and heat transfer.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |