| 1 | <p>Demonstrate an understanding of fundamental microbiological knowledge related to biochemistry, metabolism, genetics and information flow, and physiology of microorganisms.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> </p> |
| 2 | <p>Develop major experimental skills that enable further exploration in different subdisciplines related biotechnologies and bioprocesses.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 3 | <p>Evaluate traditional and emerging microbiological technologies that are used in various bioprocess applications.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 4 | <p>Critically analyse the applications of various microbial technologies in cultural and economic content.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 5 | <p>Apply microbiology and biotechnology principles to design bioprocesses for current challenges in chemical production, energy, food, or the environment in New Zealand and worldwide.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> </p> |