| 1 | <p>Retrieve, assess, and evaluate existing research outcomes and technologies relevant to the field of research. Demonstrate an in-depth understanding of the related work, including an in-depth knowledge of the literature, the important authors, the related terminology, and the research findings (theories, models, structures, designs, principles etc.)</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 2 | <p>Classify, summarise, explain, and critique the basic findings of the literature review and identify gaps in the current knowledge. Demonstrate an ability to extract and list the key issues from the literature review in order to conclude to the required problem statements and research questions. Demonstrate the ability to synthesis an exemplary problem statement, propose research questions, and formulate research hypotheses.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 3 | <p>Demonstrate clearly their knowledge of the underlying theory, methods, and procedures. Demonstrate an in-depth understanding of the required experiments and/or simulations and how they actually relate to the research questions or hypotheses. Demonstrate an understanding of the experimental design or numerical study, giving consideration to statistical significance and quality of collected data.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 4 | <p>Correctly use the theory and research methods and efficiently conduct the required experiments and/or simulations. Demonstrate the ability to use data to extract appropriate models, cluster data into relevant groups, extract major and minor components, perform statistical analysis, organise data into appropriate tables, graphs, and diagrams, interpret data and compare them with previously published data, address the validity or inappropriateness of the data (discussing possible limitations), critique and recommend future improvements for the experimental design and the research direct</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 5 | <p>Design, develop, evaluate, and experimentally validate appropriate solutions for the selected research questions. Demonstrate proficiency related to hardware and software co-design (where applicable).</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 6 | <p>Demonstrate their proficiency in engineering / technical writing by being able to generate a technical research report summarising the research findings and to create a research compendium containing all the required supplementary information.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 7 | <p>Deliver a public presentation and an exhibit to industry members of the research project findings.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 8 | <p>Provide knowledgeable and logical explanations and expert opinion in relation to the research findings. Demonstrate the ability to add, at a satisfactory level, to the existing knowledge, articulating the importance of the work, in relation to solving a larger, ‘real-world’ problem.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |