| 1 | <p>Demonstrate an understanding of (i) the design of single stub tuners, double stub tuners, alternated line transformers, quarter-wave matching sections and filters at microwave frequencies; (ii) how the radio spectrum is utilized/allocated, especially from a New Zealand perspective; and (iii) the key features of the New Zealand radio Frequency exposure standards (in accordance with NZS2772:Part 1: 1999 New Zealand Standard Radio-frequency Fields Part 1 — Maximum Exposure Levels — 3kHz to 300 GHz).</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p><p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 2 | <p>Demonstrate an ability to (i) perform calculations involving radio links in free space, over a plane-earth, through the troposphere, in the presence of terrain obstacles, diffraction over a knife-edge, multiple diffraction geometries, and for clearance paths involving Fresnel zones; (ii) calculate link budgets and undertake design of point-to-point and area coverage systems; and (iii) perform calculations involving thermal noise, minimum discernible signal, and noise figure.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 3 | <p>Demonstrate an understanding of the causes of and methods for characterising fading in mobile radio systems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 4 | <p>Demonstrate an ability to describe the key characteristics and behaviour of aperture, horn and patch antennas.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 5 | <p>Demonstrate an understanding of (i) the key characteristics that underpin the behaviour of coaxial cables, rectangular waveguides, and radio/microwave hardware; and (ii) the behaviour of non-linear systems in regard to large signal behaviour, frequency doubler/triplers, mixers, superheterodyne receivers, intermodulation distortion, dynamic range, and radar systems.</p> | <p>BE(Hons) - Bachelor of Engineering (Honours) - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |