| 1 | <p>Critically evaluate projects for factors of success and failure</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 2 | <p>Develop advanced critical thinking skills and apply such skills to project case studies</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 3 | <p>Demonstrate robust communication skills including competencies in developing critiques, engaging in debate, providing challenge and defence of views and opinions, and presentation of analysis and conclusions</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p><p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> </p> |
| 4 | <p>Identify lessons learned and synthesize such lessons learned from a range of projects into a set of strategies that improve success factors for delivery of projects</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 5 | <p>Understand the importance and value add of applying Maori values in the execution of projects</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 6 | <p>Learn and apply critical intermediate milestones and reviews in a project lifecycle to confirm that the project has a high probability of achieving its agreed ultimate objectives</p> | <p>MEPM - Master of Engineering Project Management - Programme Capabilities <p>Analyse and evaluate the impact of professional engineering work to solve complex engineering problems in societal and environmental contexts with holistic considerations for sustainable development (WA7)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p><p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> </p> |