| 1 | <p>Understand the origin and importance of laws and regulations pertaining to medical devices</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 2 | <p>Understand the medical device development and production processes</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 3 | <p>Explain the importance of medical device risk management, identifying its 5 key steps</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> </p> |
| 4 | <p>Estimate risks, and how to effectively mitigate risk to an acceptable level</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 5 | <p>Understand and analyse risks associated with the use of medical devices through the application of international standard IEC 62366</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 6 | <p>Understand and analyse risks associated with software in medical devices through the application of international standards IEC 62304 and Programmable Electrical Medical Systems requirements of IEC 60601-1</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |
| 7 | <p>Understand and explain the importance of user-centric design, and how to extract and identify the needs of the user</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> <p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> <p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> <p>Communicate effectively, respectfully and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences using a range of technologies and formats (WA10)</p> <p>Collaborate effectively as an individual, and as a member or leader in diverse and inclusive multi-disciplinary teams in face-to-face, remote and distributed settings, influencing work and in the service of others (WA9)</p> </p> |
| 8 | <p>Understand the role, responsibility, and authority of several key regulatory agencies in the process of gaining and maintaining commercialization of medical devices in key global markets</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply contextual knowledge to assess societal, health and safety, legal and cultural issues (including the principles of Te Tiriti O Waitangi), to solve complex engineering problems in accordance with responsibilities relevant to professional engineering practice locally, in Te Moananui-ā-Kiwa and the world (WA6)</p> <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p> <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p> <p>Apply ethical principles and commit to professional ethics and norms of engineering practice, adhering to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WA8)</p> <p>Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change (WA11)</p> </p> |