Skip to Main Content

Content

Course Tabs

Overview

Course Prescription

Introduction to techniques for decision making in engineering systems including decision heuristics, simple prioritisation, outranking approaches, analytic hierarchy process, application to group decision making.

Course Overview

This course offers an introduction to the context and background of decision making problems. One feature is that real-world decisions usually have multiple conflicting goals so that it is often unclear what the best decision is. In lectures we introduce different decision making tools from one or more of the following areas, demonstrate their application to case studies and finally critically review them:
- Simple prioritisation, i.e.~ranking goals in order of importance or weighting them.
- Multi-attribute value theory: Decision maker structures the problem, and specifies their values and weights and thus develops a decision model.
- Outranking methods: Decision maker preference is queried through pairwise comparisons of options.
- Analytic Hierarchy Process: The decision maker initially defines hierarchies of goals and subgoals. The decision maker iteratively ranks these goals among each other and eventually reaches a measure of their preference and hence the best decision.
- Multi-attribute utility theory: Taking uncertainty into account in decision making.
There will be lectures, some tutorials and some computer labs. After this introduction to decision making methods, students get the chance to apply their knowledge to a project where they independently work on an Engineering decision making problem of their own choice. For the final component of this course, students will independently review a research paper or book chapter on case studies using the introduced techniques. Alternatively, students may also review a paper or book chapter on the mathematical theory behind those techniques. Students then present a summary of the paper they reviewed to fellow students in short presentations. Each student can choose from a selection of suggested papers or suggest an alternative source after discussing with course instructors.

Workload Expectations

This course is a standard 15 point course and students are expected to spend 10 hours per week involved in each 15 point course that they are enrolled in.

For this course, you can expect 22 hours of lectures (with a few in-class tutorials), 2 hours of computer labs (with an additional 4 hours to complete / revise computer lab content), 12 hours of seminar presentations (all students are expected to attended their peers' presentations), 25 hours of reading and thinking about the content and 85 hours of work on assignment, project, presentation and test / exam preparation.

Course Prerequisites, Corequisites and Restrictions

Prerequisite

Locations and Semesters Offered

Location
City

Teaching and Learning

Campus Experience

Attendance is expected at scheduled activities including lectures, labs, tutorials, peer presentations to complete components of the course.
Lectures will be available as recordings. Other learning activities including labs, some tutorials and peer presentations will not be available as recordings.
The course will not include live online events.
Attendance on campus may be required for the tests.
The labs and project require software that is only available in the Engineering Science computer labs.
The activities for the course are scheduled as a standard weekly timetable.

Learning Resources

Taught courses use a learning and collaboration tool called Canvas to provide students with learning materials including reading lists and lecture recordings (where available). Please remember that the recording of any class on a personal device requires the permission of the instructor.

Additional Information on Learning Resources

There is a Talis reading list that points to the main resources, as well as topics for the student seminar presentations.The labs and project require software that is only available in the Engineering Science computer labs.

Copyright

The content and delivery of content in this course are protected by copyright. Material belonging to others may have been used in this course and copied by and solely for the educational purposes of the University under license.


You may copy the course content for the purposes of private study or research, but you may not upload onto any third-party site, make a further copy or sell, alter or further reproduce or distribute any part of the course content to another person.

Health and Safety

Students are expected to adhere to the guidelines outlined in the Health and Safety section of the Engineering Undergraduate Handbook

Learning Continuity

In the event of an unexpected disruption, we undertake to maintain the continuity and standard of teaching and learning in all your courses throughout the year. If there are unexpected disruptions the University has contingency plans to ensure that access to your course continues and course assessment continues to meet the principles of the University’s assessment policy. Some adjustments may need to be made in emergencies. You will be kept fully informed by your course co-ordinator/director, and if disruption occurs you should refer to the university website for information about how to proceed.

Academic Integrity

The University of Auckland will not tolerate cheating, or assisting others to cheat, and views cheating in coursework as a serious academic offence. The work that a student submits for grading must be the student's own work, reflecting their learning. Where work from other sources is used, it must be properly acknowledged and referenced. This requirement also applies to sources on the internet. A student's assessed work may be reviewed for potential plagiarism or other forms of academic misconduct, using computerised detection mechanisms.

Similarly, research students must meet the University’s expectations of good research practice. This requires:

  • Honesty - in all aspects of research work
  • Accountability - in the conduct of research
  • Professional courtesy and fairness – in working with others
  • Good stewardship – on behalf of others
  • Transparency – of research process and presentation of results
  • Clarity - communication to be understandable, explainable and accessible

For more information on the University’s expectations of academic integrity, please see the Academic Conduct section of the University policy hub.

Disclaimer

Elements of this outline may be subject to change. The latest information about taught courses is made available to enrolled students in Canvas.

Students may be asked to submit assessments digitally. The University reserves the right to conduct scheduled tests and examinations online or through the use of computers or other electronic devices. Where tests or examinations are conducted online remote invigilation arrangements may be used. In exceptional circumstances changes to elements of this course may be necessary at short notice. Students enrolled in this course will be informed of any such changes and the reasons for them, as soon as possible, through Canvas.


Assessment and Learning Outcomes

Additional Information on Assessment

Assignment: covers theory and basic applications of decision making methods.Project: an independent and individual application of decision making to a decision making problem of your choice with detailed write-up of the steps involved, analysis of decision problem, outcome and sensitivity analysis.Presentation: Students will independently review a research paper or book chapter on case studies using the introduced techniques. Alternatively, students may also review a paper or book chapter on the mathematical theory behind those techniques. Students then present a summary of the paper they reviewed to fellow students in short presentations. Each student can choose from a selection of suggested papers or suggest an alternative source after discussing with course instructors.The papers will be presented in the form of mini-lectures that cover related topics. Students in one session need to collaborate in organising content (avoiding repetition, etc).
Tests: Tests will cover recent material in class to encourage timely revision of conceptsExam: The final exam is a short 2-hour exam. Students must sit the exam to pass the course. Otherwise, a DNS (did not sit) result will be returned.

The final mark for the course will not exceed the exam mark by more than 10%

Course Learning Outcomes

CLO #OutcomeProgramme Capability Link
1
2
3
4
5
6
7
8
9
10

Assessments

Assessment TypeAssessment PercentageAssessment Classification

Assessment to CLO Mapping

Assessment Type12345678910

Student Feedback, Support and Charter

Student Feedback

Feedback on taught courses is gathered from students at the end of each semester through a tool called SET or Qualtrics. The lecturers and course co-ordinators will consider all feedback and respond with summaries and actions. Your feedback helps teachers to improve the course and its delivery for future students. In addition, class Representatives in each class can take feedback to the department and faculty staff-student consultative committees.

Additional Information on Student Feedback

Student feedback suggested more in-class examples. This is useful feedback, and more worked examples, perhaps delivered in tutorial sessions will be planned for next time.
Some students find the course somewhat mathematical as it discusses both decision making methodologies (and their application) as well as the underlying mathematical concepts. For some (but not too many) students the level of mathematical content is challenging, which is partly due to the very mixed background of students in this course. Since this is a relatively small class there is an opportunity to ask lots of questions during class or on Piazza as well as during the lecturers' office hours, and we encourage students to do so.

Class representatives

Class representatives are students tasked with representing student issues to departments, faculties, and the wider university. If you have a complaint about this course, please contact your class rep who will know how to raise it in the right channels. See your departmental noticeboard for contact details for your class reps.

Tuākana

Tuākana is a multi-faceted programme for Māori and Pacific students providing topic specific tutorials, one-on-one sessions, test and exam preparation and more. Explore your options at Tuakana Learning Communities.

Inclusive Learning

All students are asked to discuss any impairment related requirements privately, face to face and/or in written form with the course coordinator, lecturer or tutor.

Student Disability Services also provides support for students with a wide range of impairments, both visible and invisible, to succeed and excel at the University. For more information and contact details, please visit the Student Disability Services’ website.

Wellbeing

We all go through tough times during the semester, or see our friends struggling. There is lots of help out there - please see the Support Services page for information on support services in the University and the wider community.

Special Circumstances

If your ability to complete assessed work is affected by illness or other personal circumstances outside of your control, contact a member of teaching staff as soon as possible before the assessment is due. If your personal circumstances significantly affect your performance, or preparation, for an exam or eligible written test, refer to the University’s aegrotat or compassionate consideration page. This should be done as soon as possible and no later than seven days after the affected test or exam date.

Student Charter and Responsibilities

The Student Charter assumes and acknowledges that students are active participants in the learning process and that they have responsibilities to the institution and the international community of scholars. The University expects that students will act at all times in a way that demonstrates respect for the rights of other students and staff so that the learning environment is both safe and productive. For further information visit Student Charter.

Student Academic Complaints and Disputes

Students with concerns about teaching including how a course is delivered, the resources provided, or supervision arrangements, have the right to express their concerns and seek resolution. The university encourages informal resolution where possible, as this is quicker and less stressful. For information on the informal and formal complaints processes, please refer to the Student Academic Complaints Statute in the Student Policies and Guidelines section of the Policy Hub.