| 1 | <p>Understand How standard mechanics and dynamics work at the microscale, and how this needs to be considered in microsystem design, and how it can be exploited </p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 2 | <p>Analyse Microscale fluid flow in the context of microfluidics. Understand the working principles behind a number of common microfluidic applications.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |
| 3 | <p>Understand the structural and dynamic principles behind the operation of microscale MEMS actuators and sensors</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p> </p> |
| 4 | <p>Understand the relevant materials used in typical MEMS applications, and how they are processed to form working devices</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 5 | <p>Explain the common processing routes for microscale devices, and understand how the processes can be used in conjunction with each other to fabricate full devices.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p> </p> |
| 6 | <p>Understand how the mechanical transduction of microscale devices can be either recorded or controlled by appropriate electrical signals and applied into various applications such as sensor, actuator and energy harvesting.</p> | <p>MEngSt - Master of Engineering Studies - Programme Capabilities <p>Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialisation, considering multiple perspectives and knowledge systems to develop solutions to complex engineering problems (WA1)</p><p>Create, select, apply, and recognize limitations of appropriate techniques, resources, and modern engineering and IT tools, including, measurements, modelling and prediction, to solve complex engineering problems (WA5)</p><p>Use knowledge of mathematics, natural sciences and engineering principles, and research literature to identify, formulate, analyse and solve complex engineering problems and reach substantiated conclusions (WA2)</p><p>Conduct investigations of complex engineering problems using research methods, research-based knowledge, design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WA4)</p><p>Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon, as well as resource, cultural, societal, and environmental considerations as required (WA3)</p> </p> |